Cross-Reference Maximum Likelihood Estimates for Positron Emission Tomography

نویسندگان

  • Chung-Ming Chen
  • Horng-Shing Lu
چکیده

Maximum likelihood estimate (MLE) is a widely-used approach for PET image reconstruction. However, it has been shown that reconstructing emission tomography based on MLE without regularization would result in noise and edge artifacts. In the attempt to regularize the maximum likelihood estimate , in this paper, we propose a new and eecient method to incorporate the correlated but possibly incomplete structure information which may be derived from expertise, PET systems or other imaging modalities. A mean estimate smoothing the MLE locally within each region of interest is derived according to the boundaries provided by the structure information. Since the boundaries may not be correct, a penalized MLE using the mean estimate is sought. The resulting reconstruction is called a cross-reference maximum likelihood estimate (CRMLE). The CRMLE can be obtained through a modiied EM algorithm, which is computation and storage eecient. By borrowing the strength from the correct portion of boundary information, the CRMLE is able to extract the useful information to improve reconstruction for diierent kinds of incomplete and incorrect boundaries in Monte Carlo studies. The proposed CRMLE algorithm not only reduces the estimation errors, but also preserves the correct boundaries. The penalty parameters can be selected through human interactions or automatically data-driven methods, such as the generalized cross validation method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated Cross-Reference Maximum Likelihood Estimates for Positron Emission Tomography

The state of art of positron emission tomography (PET) takes into account the accidental coincidence events and attenuation. The maximum likelihood estimator can handle this kind of random variation in the reconstruction of a PET image. However, the reconstruction is ill-posed and needs regularization. The boundary information, either from an expert or from the other medical modality of the sam...

متن کامل

Calculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit

Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEA...

متن کامل

Detection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging

Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging  yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...

متن کامل

Characteristics of Smoothing Filters to Achieve the Guideline Recommended Positron Emission Tomography Image without Harmonization

Objective(s): The aim of this study is to examine the effect of different smoothing filters on the image quality and SUVmax to achieve the guideline recommended positron emission tomography (PET) image without harmonization. Methods: We used a Biograph mCT PET scanner. A National Electrical Manufacturers Association (NEMA) the International Electrotechnical Commission (IEC) body phantom was fil...

متن کامل

from projections. ” IEEE Trans Nucl Sci, 1976; NS-23: 1428-1432 [2] A.P. Dempster, N.M. Laird, D.B. Rubin “Maximum likelihood from incomplete data via

A maximum likelihood approach to emission image reconstruction from projections. Maximum likelihood from incomplete data via the EM algorithm. " A theoretical study of some maximum likelihood algorithms for emission and transmission tomography. Attenuation compensation of cone beam SPECT images using maximum likelihood reconstruction. Three-dimensional SPECT reconstruction of combined cone beam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997